翻訳と辞書
Words near each other
・ Binekli, Sason
・ Binem Heller
・ Biner
・ Bines Green
・ Bineswar Brahma
・ Bineswar Brahma Engineering College
・ Binet
・ Binet equation
・ BiNet USA
・ Binet-Valmer
・ Bineta Diedhiou
・ Bineta Diouf
・ Binetsu
・ Binetsu Shōjo
・ Binetto
Binet–Cauchy identity
・ Binev
・ Binevenagh
・ Binfield
・ Binfield F.C.
・ Binfield Heath
・ Binfield Park Dam
・ Binfield, Isle of Wight
・ Binfire
・ Binfmt misc
・ Binford
・ Binford & Mort
・ Binford (surname)
・ Binford, Mississippi
・ Binford, North Dakota


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Binet–Cauchy identity : ウィキペディア英語版
Binet–Cauchy identity
In algebra, the Binet–Cauchy identity, named after Jacques Philippe Marie Binet and Augustin-Louis Cauchy, states that 〔

:
\biggl(\sum_^n a_i c_i\biggr)
\biggl(\sum_^n b_j d_j\biggr) =
\biggl(\sum_^n a_i d_i\biggr)
\biggl(\sum_^n b_j c_j\biggr)
+ \sum_
(a_i b_j - a_j b_i )
(c_i d_j - c_j d_i )

for every choice of real or complex numbers (or more generally, elements of a commutative ring).
Setting ''ai'' = ''ci'' and ''bj'' = ''dj'', it gives the Lagrange's identity, which is a stronger version of the Cauchy–Schwarz inequality for the Euclidean space \scriptstyle\mathbb^n.
==The Binet–Cauchy identity and exterior algebra==
When ''n'' = 3 the first and second terms on the right hand side become the squared magnitudes of dot and cross products respectively; in ''n'' dimensions these become the magnitudes of the dot and wedge products. We may write it
:(a \cdot c)(b \cdot d) = (a \cdot d)(b \cdot c) + (a \wedge b) \cdot (c \wedge d)\,
where a, b, c, and d are vectors. It may also be written as a formula giving the dot product of two wedge products, as
:(a \wedge b) \cdot (c \wedge d) = (a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c).\,
In the special case of unit vectors ''a=c'' and ''b=d'', the formula yields
:|a \wedge b|^2 = |a|^2|b|^2 - |a \cdot b|^2. \,
When both vectors are unit vectors, we obtain the usual relation
:1= \cos^2(\phi)+\sin^2(\phi)
where φ is the angle between the vectors.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Binet–Cauchy identity」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.